If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-520=0
a = 1; b = 4; c = -520;
Δ = b2-4ac
Δ = 42-4·1·(-520)
Δ = 2096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2096}=\sqrt{16*131}=\sqrt{16}*\sqrt{131}=4\sqrt{131}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{131}}{2*1}=\frac{-4-4\sqrt{131}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{131}}{2*1}=\frac{-4+4\sqrt{131}}{2} $
| 3b-43(4b+6)=8-6b | | 3x^2+12x=27 | | 1+6m=3m-5 | | 0.11x+0.7(x-3)=0.01(4x-2) | | 2x70+10+30=180 | | 3.9q-4.6-5.4q=-0.5q-4.6 | | (-16b^2)-(20b^2)=0 | | t÷12/5 =−10/3 | | 4t+6+3t-6t=3+1 | | 0.007*x=-21 | | 2m-4-5m=-7m+1 | | 10w-5-7w=-9w+1 | | 13x+7=8x=27 | | 3(x+2)=×-18 | | 3/5a-1/5=2 | | 300-2x=100+3x | | 160-52x+3x^2=0 | | 34i/(1-4i)=0 | | 16=1/2·4(3+b) | | 2+√(3x-2)=6 | | 15-3x=8x-18 | | 8x-9=8x+9 | | 2x2-98x=-5 | | 7x+4-5x=12 | | 4x-5=-4x-5 | | (33k+9)+(90)=180 | | g8/5=1 | | 6x+4×=180 | | .05x+.10x=8.50 | | 1/2x+9=37 | | 2/3k-(k+1/2)=1/6(k+2) | | 4/7=x-3/7 |